Exam. Code
 105701
 Subject Code :
 1537

B.Sc. IT $1^{\text {st }}$ Semester
 APPLIED AND DISCRETE MATHEMATICS

Paper-III

Time Allowed-3 Hours]
[Maximum Marks-75
Note:- Eight questions are given. Candidates are required to attempt any five questions.

1. (a) If $A=\{1,2,3\}, B=\{4,5,6\}, C=\{7,8,9\}$, then verify that :

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

(b) In a school there are 20 teachers who teach mathematics or physics of these 12 teach mathematics and 4 teach physics and mathematics. How many teach physics?
(c) Let $\mathrm{U}=\{1,2,3,4,5,6\}, \mathrm{A}=\{2,3\}$ and $B=\{3,4,5\}$. Find $A^{C}, B^{C}, A^{C} \cap B^{C}, A \cup B$ and hence show that $(A \cup B)^{C}=A^{c} \cap B^{c}$.
(d) If $\mathrm{A}=\{1,3,5,7,9\}, \mathrm{B}=\{2,4,6,8,10\}$, $\mathrm{C}=\{1,2,3,4\}$, then find :
(i) $\mathrm{A}-\mathrm{C}$
(ii) $\mathrm{A} \cap(\mathrm{B}-\mathrm{C})$
(iii) $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})$
$3+4+3+5=15$

503(2117)/BSS-30125
(Contd.)
2. (a) Find $A \triangle B$, if $A=\{2,3,5,7\}, B=\{3,4,6,8,10\}$
(b) Let $\mathrm{A}=\left\{\frac{1}{2}, 2\right\}, \mathrm{B}=\{2,3,5\}, \mathrm{C}=\{-1,-2\}$, then verify that $A \times(B-C)=(A \times B)-(A \times C)$.
(c) Let $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{B}=\{2,4,6,8,10\}$. Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}, \mathrm{a}$ divides b$\}$ be a relation from A into B. Find R. Show that domain of R is A and range of R is B. $\quad 5+5+5=15$
3. (a) Determine whether the relation represented by zeroone matrix $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$ is an equivalence relation.
(b) Let $\mathrm{x}=\{1,2,3,4\}, \mathrm{R}=\{\langle\mathrm{x}, \mathrm{y}\rangle|\mathrm{x}\rangle \mathrm{y}\}$. Draw the graph of R and also give its matrix.
(c) Prove that $(p \wedge q) \rightarrow(p \wedge q)$ is a tautology but $(p \vee q) \rightarrow(p \wedge q)$ is not.
(d) Prove the validity of following arguments :

If man is a bachelor, he is unhappy
If a man is unhappy, he dies young Therefore, bachelors die young
4. (a) Define two different types of quantifier with example.
(b) Define:
(i) Conjunction
(ii) Disjunction
(iii) Negation all with truth table.
(c) Write the truth table of following statement:

$$
[\mathrm{p} \rightarrow(\mathrm{q} \vee \mathrm{r})]^{\prime} \vee[\mathrm{p} \leftrightarrow \sim \mathrm{r}] \quad 5+5+5=15
$$

5. (a) Prove that $\{[(p \rightarrow q) \vee p] \wedge q\} \rightarrow q$ is a tautology.
(b) Let R be a relation on a set $\mathrm{A}=\{1,2,3\}$ defined by :
$R=\{(1,1),(1,2),(2,3)\}$. Find the reflexive closure of R and symmetric closure of R.
(c) Define different type of closure with example.

$$
5+5+5=15
$$

6. (a) Show that $(A+B)(\bar{A}+C)=A C+\bar{A} B$
(b) Minimize the function:

$$
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,3,5,6,7)+\mathrm{d}(2,4)
$$

(c) Prove De-morgan law with the help of truth table.

a2zpapers.com

7. (a) If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$, then show that

$$
A^{3}-6 A^{2}+7 A+2 I=0
$$

(b) Given that $\mathrm{A}=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$.

Find AB . Use this to solve the following system of linear equations :

$$
\begin{array}{r}
x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1 \\
7.5+7.5=15
\end{array}
$$

8. (a) Solve the following system of linear equations by matrix method :

$$
x+y+z=6, x+2 z=7,3 x+y+z=12
$$

(b) Find the rank of the matrix $\left[\begin{array}{cccc}1 & -1 & 3 & 6 \\ 1 & 3 & -3 & -4 \\ 5 & 3 & 3 & 11\end{array}\right]$ $7.5+7.5=15$

